Module narya.linker.kalman_filter
Expand source code
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import scipy.linalg
"""
Cloned from https://github.com/Zhongdao/Towards-Realtime-MOT,
"""
"""
Table for the 0.95 quantile of the chi-square distribution with N degrees of
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
function and used as Mahalanobis gating threshold.
"""
chi2inv95 = {
1: 3.8415,
2: 5.9915,
3: 7.8147,
4: 9.4877,
5: 11.070,
6: 12.592,
7: 14.067,
8: 15.507,
9: 16.919,
}
class KalmanFilter(object):
"""
A simple Kalman filter for tracking bounding boxes in image space.
The 8-dimensional state space
x, y, a, h, vx, vy, va, vh
contains the bounding box center position (x, y), aspect ratio a, height h,
and their respective velocities.
Object motion follows a constant velocity model. The bounding box location
(x, y, a, h) is taken as direct observation of the state space (linear
observation model).
"""
def __init__(self):
ndim, dt = 4, 1.0
# Create Kalman filter model matrices.
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
for i in range(ndim):
self._motion_mat[i, ndim + i] = dt
self._update_mat = np.eye(ndim, 2 * ndim)
# Motion and observation uncertainty are chosen relative to the current
# state estimate. These weights control the amount of uncertainty in
# the model. This is a bit hacky.
self._std_weight_position = 1.0 / 20
self._std_weight_velocity = 1.0 / 160
def initiate(self, measurement):
"""Create track from unassociated measurement.
Arguments:
measurement : ndarray
Bounding box coordinates (x, y, a, h) with center position (x, y),
aspect ratio a, and height h.
Returns:
(ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8
dimensional) of the new track. Unobserved velocities are initialized
to 0 mean.
Raises:
"""
mean_pos = measurement
mean_vel = np.zeros_like(mean_pos)
mean = np.r_[mean_pos, mean_vel]
std = [
2 * self._std_weight_position * measurement[3],
2 * self._std_weight_position * measurement[3],
1e-2,
2 * self._std_weight_position * measurement[3],
10 * self._std_weight_velocity * measurement[3],
10 * self._std_weight_velocity * measurement[3],
1e-5,
10 * self._std_weight_velocity * measurement[3],
]
covariance = np.diag(np.square(std))
return mean, covariance
def predict(self, mean, covariance):
"""Run Kalman filter prediction step.
Arguments:
mean : ndarray, The 8 dimensional mean vector of the object state at the previous
time step.
covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the
previous time step.
Returns:
(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
state. Unobserved velocities are initialized to 0 mean.
Raises:
"""
std_pos = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-2,
self._std_weight_position * mean[3],
]
std_vel = [
self._std_weight_velocity * mean[3],
self._std_weight_velocity * mean[3],
1e-5,
self._std_weight_velocity * mean[3],
]
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
# mean = np.dot(self._motion_mat, mean)
mean = np.dot(mean, self._motion_mat.T)
covariance = (
np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T))
+ motion_cov
)
return mean, covariance
def project(self, mean, covariance):
"""Project state distribution to measurement space.
Arguments:
mean : ndarray, The state's mean vector (8 dimensional array).
covariance : ndarray, The state's covariance matrix (8x8 dimensional).
Returns:
(ndarray, ndarray): Returns the projected mean and covariance matrix of the given state
estimate.
Raises:
"""
std = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-1,
self._std_weight_position * mean[3],
]
innovation_cov = np.diag(np.square(std))
mean = np.dot(self._update_mat, mean)
covariance = np.linalg.multi_dot(
(self._update_mat, covariance, self._update_mat.T)
)
return mean, covariance + innovation_cov
def multi_predict(self, mean, covariance):
"""Run Kalman filter prediction step (Vectorized version).
Arguments:
mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous
time step.
covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the
previous time step.
Returns:
(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
state. Unobserved velocities are initialized to 0 mean.
Raises:
"""
std_pos = [
self._std_weight_position * mean[:, 3],
self._std_weight_position * mean[:, 3],
1e-2 * np.ones_like(mean[:, 3]),
self._std_weight_position * mean[:, 3],
]
std_vel = [
self._std_weight_velocity * mean[:, 3],
self._std_weight_velocity * mean[:, 3],
1e-5 * np.ones_like(mean[:, 3]),
self._std_weight_velocity * mean[:, 3],
]
sqr = np.square(np.r_[std_pos, std_vel]).T
motion_cov = []
for i in range(len(mean)):
motion_cov.append(np.diag(sqr[i]))
motion_cov = np.asarray(motion_cov)
mean = np.dot(mean, self._motion_mat.T)
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
covariance = np.dot(left, self._motion_mat.T) + motion_cov
return mean, covariance
def update(self, mean, covariance, measurement):
"""Run Kalman filter correction step.
Arguments:
mean : ndarray, The predicted state's mean vector (8 dimensional).
covariance : ndarray, The state's covariance matrix (8x8 dimensional).
measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y)
is the center position, a the aspect ratio, and h the height of the
bounding box.
Returns:
(ndarray, ndarray): Returns the measurement-corrected state distribution.
Raises:
"""
projected_mean, projected_cov = self.project(mean, covariance)
chol_factor, lower = scipy.linalg.cho_factor(
projected_cov, lower=True, check_finite=False
)
kalman_gain = scipy.linalg.cho_solve(
(chol_factor, lower),
np.dot(covariance, self._update_mat.T).T,
check_finite=False,
).T
innovation = measurement - projected_mean
new_mean = mean + np.dot(innovation, kalman_gain.T)
new_covariance = covariance - np.linalg.multi_dot(
(kalman_gain, projected_cov, kalman_gain.T)
)
return new_mean, new_covariance
def gating_distance(
self, mean, covariance, measurements, only_position=False, metric="maha"
):
"""Compute gating distance between state distribution and measurements.
A suitable distance threshold can be obtained from `chi2inv95`. If
`only_position` is False, the chi-square distribution has 4 degrees of
freedom, otherwise 2.
Arguments:
mean : ndarray, Mean vector over the state distribution (8 dimensional).
covariance : ndarray, Covariance of the state distribution (8x8 dimensional).
measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in
format (x, y, a, h) where (x, y) is the bounding box center
position, a the aspect ratio, and h the height.
only_position : Optional[bool], If True, distance computation is done with respect to the bounding
box center position only.
Returns:
ndarray: Returns an array of length N, where the i-th element contains the
squared Mahalanobis distance between (mean, covariance) and
`measurements[i]`.
Raises:
"""
mean, covariance = self.project(mean, covariance)
if only_position:
mean, covariance = mean[:2], covariance[:2, :2]
measurements = measurements[:, :2]
d = measurements - mean
if metric == "gaussian":
return np.sum(d * d, axis=1)
elif metric == "maha":
cholesky_factor = np.linalg.cholesky(covariance)
z = scipy.linalg.solve_triangular(
cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
)
squared_maha = np.sum(z * z, axis=0)
return squared_maha
else:
raise ValueError("invalid distance metric")
Classes
class KalmanFilter
-
A simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space x, y, a, h, vx, vy, va, vh contains the bounding box center position (x, y), aspect ratio a, height h, and their respective velocities. Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct observation of the state space (linear observation model).
Expand source code
class KalmanFilter(object): """ A simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space x, y, a, h, vx, vy, va, vh contains the bounding box center position (x, y), aspect ratio a, height h, and their respective velocities. Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct observation of the state space (linear observation model). """ def __init__(self): ndim, dt = 4, 1.0 # Create Kalman filter model matrices. self._motion_mat = np.eye(2 * ndim, 2 * ndim) for i in range(ndim): self._motion_mat[i, ndim + i] = dt self._update_mat = np.eye(ndim, 2 * ndim) # Motion and observation uncertainty are chosen relative to the current # state estimate. These weights control the amount of uncertainty in # the model. This is a bit hacky. self._std_weight_position = 1.0 / 20 self._std_weight_velocity = 1.0 / 160 def initiate(self, measurement): """Create track from unassociated measurement. Arguments: measurement : ndarray Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. Returns: (ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. Raises: """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2, 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3], 10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3], ] covariance = np.diag(np.square(std)) return mean, covariance def predict(self, mean, covariance): """Run Kalman filter prediction step. Arguments: mean : ndarray, The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns: (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises: """ std_pos = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2, self._std_weight_position * mean[3], ] std_vel = [ self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5, self._std_weight_velocity * mean[3], ] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) # mean = np.dot(self._motion_mat, mean) mean = np.dot(mean, self._motion_mat.T) covariance = ( np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov ) return mean, covariance def project(self, mean, covariance): """Project state distribution to measurement space. Arguments: mean : ndarray, The state's mean vector (8 dimensional array). covariance : ndarray, The state's covariance matrix (8x8 dimensional). Returns: (ndarray, ndarray): Returns the projected mean and covariance matrix of the given state estimate. Raises: """ std = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1, self._std_weight_position * mean[3], ] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot( (self._update_mat, covariance, self._update_mat.T) ) return mean, covariance + innovation_cov def multi_predict(self, mean, covariance): """Run Kalman filter prediction step (Vectorized version). Arguments: mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns: (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises: """ std_pos = [ self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3], 1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3], ] std_vel = [ self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3], 1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3], ] sqr = np.square(np.r_[std_pos, std_vel]).T motion_cov = [] for i in range(len(mean)): motion_cov.append(np.diag(sqr[i])) motion_cov = np.asarray(motion_cov) mean = np.dot(mean, self._motion_mat.T) left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) covariance = np.dot(left, self._motion_mat.T) + motion_cov return mean, covariance def update(self, mean, covariance, measurement): """Run Kalman filter correction step. Arguments: mean : ndarray, The predicted state's mean vector (8 dimensional). covariance : ndarray, The state's covariance matrix (8x8 dimensional). measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. Returns: (ndarray, ndarray): Returns the measurement-corrected state distribution. Raises: """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False ) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False, ).T innovation = measurement - projected_mean new_mean = mean + np.dot(innovation, kalman_gain.T) new_covariance = covariance - np.linalg.multi_dot( (kalman_gain, projected_cov, kalman_gain.T) ) return new_mean, new_covariance def gating_distance( self, mean, covariance, measurements, only_position=False, metric="maha" ): """Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Arguments: mean : ndarray, Mean vector over the state distribution (8 dimensional). covariance : ndarray, Covariance of the state distribution (8x8 dimensional). measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool], If True, distance computation is done with respect to the bounding box center position only. Returns: ndarray: Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`. Raises: """ mean, covariance = self.project(mean, covariance) if only_position: mean, covariance = mean[:2], covariance[:2, :2] measurements = measurements[:, :2] d = measurements - mean if metric == "gaussian": return np.sum(d * d, axis=1) elif metric == "maha": cholesky_factor = np.linalg.cholesky(covariance) z = scipy.linalg.solve_triangular( cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True ) squared_maha = np.sum(z * z, axis=0) return squared_maha else: raise ValueError("invalid distance metric")
Methods
def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha')
-
Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from
chi2inv95
. Ifonly_position
is False, the chi-square distribution has 4 degrees of freedom, otherwise 2.Arguments
mean : ndarray, Mean vector over the state distribution (8 dimensional). covariance : ndarray, Covariance of the state distribution (8x8 dimensional). measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool], If True, distance computation is done with respect to the bounding box center position only. Returns:
ndarray: Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) andmeasurements[i]
. Raises:Expand source code
def gating_distance( self, mean, covariance, measurements, only_position=False, metric="maha" ): """Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Arguments: mean : ndarray, Mean vector over the state distribution (8 dimensional). covariance : ndarray, Covariance of the state distribution (8x8 dimensional). measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool], If True, distance computation is done with respect to the bounding box center position only. Returns: ndarray: Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`. Raises: """ mean, covariance = self.project(mean, covariance) if only_position: mean, covariance = mean[:2], covariance[:2, :2] measurements = measurements[:, :2] d = measurements - mean if metric == "gaussian": return np.sum(d * d, axis=1) elif metric == "maha": cholesky_factor = np.linalg.cholesky(covariance) z = scipy.linalg.solve_triangular( cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True ) squared_maha = np.sum(z * z, axis=0) return squared_maha else: raise ValueError("invalid distance metric")
def initiate(self, measurement)
-
Create track from unassociated measurement.
Arguments
measurement : ndarray Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h.
Returns
(ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. Raises:
Expand source code
def initiate(self, measurement): """Create track from unassociated measurement. Arguments: measurement : ndarray Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. Returns: (ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. Raises: """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2, 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3], 10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3], ] covariance = np.diag(np.square(std)) return mean, covariance
def multi_predict(self, mean, covariance)
-
Run Kalman filter prediction step (Vectorized version).
Arguments
mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the previous time step.
Returns
(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises:
Expand source code
def multi_predict(self, mean, covariance): """Run Kalman filter prediction step (Vectorized version). Arguments: mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns: (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises: """ std_pos = [ self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3], 1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3], ] std_vel = [ self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3], 1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3], ] sqr = np.square(np.r_[std_pos, std_vel]).T motion_cov = [] for i in range(len(mean)): motion_cov.append(np.diag(sqr[i])) motion_cov = np.asarray(motion_cov) mean = np.dot(mean, self._motion_mat.T) left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) covariance = np.dot(left, self._motion_mat.T) + motion_cov return mean, covariance
def predict(self, mean, covariance)
-
Run Kalman filter prediction step.
Arguments
mean : ndarray, The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the previous time step.
Returns
(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises:
Expand source code
def predict(self, mean, covariance): """Run Kalman filter prediction step. Arguments: mean : ndarray, The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns: (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises: """ std_pos = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2, self._std_weight_position * mean[3], ] std_vel = [ self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5, self._std_weight_velocity * mean[3], ] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) # mean = np.dot(self._motion_mat, mean) mean = np.dot(mean, self._motion_mat.T) covariance = ( np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov ) return mean, covariance
def project(self, mean, covariance)
-
Project state distribution to measurement space.
Arguments
mean : ndarray, The state's mean vector (8 dimensional array). covariance : ndarray, The state's covariance matrix (8x8 dimensional).
Returns
(ndarray, ndarray): Returns the projected mean and covariance matrix of the given state estimate. Raises:
Expand source code
def project(self, mean, covariance): """Project state distribution to measurement space. Arguments: mean : ndarray, The state's mean vector (8 dimensional array). covariance : ndarray, The state's covariance matrix (8x8 dimensional). Returns: (ndarray, ndarray): Returns the projected mean and covariance matrix of the given state estimate. Raises: """ std = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1, self._std_weight_position * mean[3], ] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot( (self._update_mat, covariance, self._update_mat.T) ) return mean, covariance + innovation_cov
def update(self, mean, covariance, measurement)
-
Run Kalman filter correction step.
Arguments
mean : ndarray, The predicted state's mean vector (8 dimensional). covariance : ndarray, The state's covariance matrix (8x8 dimensional). measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box.
Returns
(ndarray, ndarray): Returns the measurement-corrected state distribution. Raises:
Expand source code
def update(self, mean, covariance, measurement): """Run Kalman filter correction step. Arguments: mean : ndarray, The predicted state's mean vector (8 dimensional). covariance : ndarray, The state's covariance matrix (8x8 dimensional). measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. Returns: (ndarray, ndarray): Returns the measurement-corrected state distribution. Raises: """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False ) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False, ).T innovation = measurement - projected_mean new_mean = mean + np.dot(innovation, kalman_gain.T) new_covariance = covariance - np.linalg.multi_dot( (kalman_gain, projected_cov, kalman_gain.T) ) return new_mean, new_covariance