Module narya.linker.kalman_filter

Expand source code
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import scipy.linalg

"""

Cloned from https://github.com/Zhongdao/Towards-Realtime-MOT,

"""
"""

Table for the 0.95 quantile of the chi-square distribution with N degrees of
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
function and used as Mahalanobis gating threshold.
"""
chi2inv95 = {
    1: 3.8415,
    2: 5.9915,
    3: 7.8147,
    4: 9.4877,
    5: 11.070,
    6: 12.592,
    7: 14.067,
    8: 15.507,
    9: 16.919,
}


class KalmanFilter(object):
    """
    A simple Kalman filter for tracking bounding boxes in image space.
    The 8-dimensional state space
        x, y, a, h, vx, vy, va, vh
    contains the bounding box center position (x, y), aspect ratio a, height h,
    and their respective velocities.
    Object motion follows a constant velocity model. The bounding box location
    (x, y, a, h) is taken as direct observation of the state space (linear
    observation model).
    """

    def __init__(self):
        ndim, dt = 4, 1.0

        # Create Kalman filter model matrices.
        self._motion_mat = np.eye(2 * ndim, 2 * ndim)
        for i in range(ndim):
            self._motion_mat[i, ndim + i] = dt
        self._update_mat = np.eye(ndim, 2 * ndim)

        # Motion and observation uncertainty are chosen relative to the current
        # state estimate. These weights control the amount of uncertainty in
        # the model. This is a bit hacky.
        self._std_weight_position = 1.0 / 20
        self._std_weight_velocity = 1.0 / 160

    def initiate(self, measurement):
        """Create track from unassociated measurement.
        Arguments:
            measurement : ndarray
                Bounding box coordinates (x, y, a, h) with center position (x, y),
                aspect ratio a, and height h.
        Returns:
            (ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8
                dimensional) of the new track. Unobserved velocities are initialized
                to 0 mean.
        Raises:
        """
        mean_pos = measurement
        mean_vel = np.zeros_like(mean_pos)
        mean = np.r_[mean_pos, mean_vel]

        std = [
            2 * self._std_weight_position * measurement[3],
            2 * self._std_weight_position * measurement[3],
            1e-2,
            2 * self._std_weight_position * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            1e-5,
            10 * self._std_weight_velocity * measurement[3],
        ]
        covariance = np.diag(np.square(std))
        return mean, covariance

    def predict(self, mean, covariance):
        """Run Kalman filter prediction step.
        Arguments:
            mean : ndarray, The 8 dimensional mean vector of the object state at the previous
                time step.
            covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the
                previous time step.
        Returns:
            (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
                state. Unobserved velocities are initialized to 0 mean.
        Raises:
        """
        std_pos = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-2,
            self._std_weight_position * mean[3],
        ]
        std_vel = [
            self._std_weight_velocity * mean[3],
            self._std_weight_velocity * mean[3],
            1e-5,
            self._std_weight_velocity * mean[3],
        ]
        motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

        # mean = np.dot(self._motion_mat, mean)
        mean = np.dot(mean, self._motion_mat.T)
        covariance = (
            np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T))
            + motion_cov
        )

        return mean, covariance

    def project(self, mean, covariance):
        """Project state distribution to measurement space.
        Arguments:
            mean : ndarray, The state's mean vector (8 dimensional array).
            covariance : ndarray, The state's covariance matrix (8x8 dimensional).
        Returns:
            (ndarray, ndarray): Returns the projected mean and covariance matrix of the given state
                estimate.
        Raises:
        """
        std = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-1,
            self._std_weight_position * mean[3],
        ]
        innovation_cov = np.diag(np.square(std))

        mean = np.dot(self._update_mat, mean)
        covariance = np.linalg.multi_dot(
            (self._update_mat, covariance, self._update_mat.T)
        )
        return mean, covariance + innovation_cov

    def multi_predict(self, mean, covariance):
        """Run Kalman filter prediction step (Vectorized version).
        Arguments:
            mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous
                time step.
            covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the
                previous time step.
        Returns:
            (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
                state. Unobserved velocities are initialized to 0 mean.
        Raises:
        """
        std_pos = [
            self._std_weight_position * mean[:, 3],
            self._std_weight_position * mean[:, 3],
            1e-2 * np.ones_like(mean[:, 3]),
            self._std_weight_position * mean[:, 3],
        ]
        std_vel = [
            self._std_weight_velocity * mean[:, 3],
            self._std_weight_velocity * mean[:, 3],
            1e-5 * np.ones_like(mean[:, 3]),
            self._std_weight_velocity * mean[:, 3],
        ]
        sqr = np.square(np.r_[std_pos, std_vel]).T

        motion_cov = []
        for i in range(len(mean)):
            motion_cov.append(np.diag(sqr[i]))
        motion_cov = np.asarray(motion_cov)

        mean = np.dot(mean, self._motion_mat.T)
        left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
        covariance = np.dot(left, self._motion_mat.T) + motion_cov

        return mean, covariance

    def update(self, mean, covariance, measurement):
        """Run Kalman filter correction step.
        Arguments:
            mean : ndarray, The predicted state's mean vector (8 dimensional).
            covariance : ndarray, The state's covariance matrix (8x8 dimensional).
            measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y)
                is the center position, a the aspect ratio, and h the height of the
                bounding box.
        Returns:
            (ndarray, ndarray): Returns the measurement-corrected state distribution.
        Raises:
        """
        projected_mean, projected_cov = self.project(mean, covariance)

        chol_factor, lower = scipy.linalg.cho_factor(
            projected_cov, lower=True, check_finite=False
        )
        kalman_gain = scipy.linalg.cho_solve(
            (chol_factor, lower),
            np.dot(covariance, self._update_mat.T).T,
            check_finite=False,
        ).T
        innovation = measurement - projected_mean

        new_mean = mean + np.dot(innovation, kalman_gain.T)
        new_covariance = covariance - np.linalg.multi_dot(
            (kalman_gain, projected_cov, kalman_gain.T)
        )
        return new_mean, new_covariance

    def gating_distance(
        self, mean, covariance, measurements, only_position=False, metric="maha"
    ):
        """Compute gating distance between state distribution and measurements.
        A suitable distance threshold can be obtained from `chi2inv95`. If
        `only_position` is False, the chi-square distribution has 4 degrees of
        freedom, otherwise 2.
        Arguments:
            mean : ndarray, Mean vector over the state distribution (8 dimensional).
            covariance : ndarray, Covariance of the state distribution (8x8 dimensional).
            measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in
                format (x, y, a, h) where (x, y) is the bounding box center
                position, a the aspect ratio, and h the height.
            only_position : Optional[bool], If True, distance computation is done with respect to the bounding
                box center position only.
        Returns:        
            ndarray: Returns an array of length N, where the i-th element contains the
                squared Mahalanobis distance between (mean, covariance) and
                `measurements[i]`.
        Raises:
        """
        mean, covariance = self.project(mean, covariance)
        if only_position:
            mean, covariance = mean[:2], covariance[:2, :2]
            measurements = measurements[:, :2]

        d = measurements - mean
        if metric == "gaussian":
            return np.sum(d * d, axis=1)
        elif metric == "maha":
            cholesky_factor = np.linalg.cholesky(covariance)
            z = scipy.linalg.solve_triangular(
                cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
            )
            squared_maha = np.sum(z * z, axis=0)
            return squared_maha
        else:
            raise ValueError("invalid distance metric")

Classes

class KalmanFilter

A simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space x, y, a, h, vx, vy, va, vh contains the bounding box center position (x, y), aspect ratio a, height h, and their respective velocities. Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct observation of the state space (linear observation model).

Expand source code
class KalmanFilter(object):
    """
    A simple Kalman filter for tracking bounding boxes in image space.
    The 8-dimensional state space
        x, y, a, h, vx, vy, va, vh
    contains the bounding box center position (x, y), aspect ratio a, height h,
    and their respective velocities.
    Object motion follows a constant velocity model. The bounding box location
    (x, y, a, h) is taken as direct observation of the state space (linear
    observation model).
    """

    def __init__(self):
        ndim, dt = 4, 1.0

        # Create Kalman filter model matrices.
        self._motion_mat = np.eye(2 * ndim, 2 * ndim)
        for i in range(ndim):
            self._motion_mat[i, ndim + i] = dt
        self._update_mat = np.eye(ndim, 2 * ndim)

        # Motion and observation uncertainty are chosen relative to the current
        # state estimate. These weights control the amount of uncertainty in
        # the model. This is a bit hacky.
        self._std_weight_position = 1.0 / 20
        self._std_weight_velocity = 1.0 / 160

    def initiate(self, measurement):
        """Create track from unassociated measurement.
        Arguments:
            measurement : ndarray
                Bounding box coordinates (x, y, a, h) with center position (x, y),
                aspect ratio a, and height h.
        Returns:
            (ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8
                dimensional) of the new track. Unobserved velocities are initialized
                to 0 mean.
        Raises:
        """
        mean_pos = measurement
        mean_vel = np.zeros_like(mean_pos)
        mean = np.r_[mean_pos, mean_vel]

        std = [
            2 * self._std_weight_position * measurement[3],
            2 * self._std_weight_position * measurement[3],
            1e-2,
            2 * self._std_weight_position * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            1e-5,
            10 * self._std_weight_velocity * measurement[3],
        ]
        covariance = np.diag(np.square(std))
        return mean, covariance

    def predict(self, mean, covariance):
        """Run Kalman filter prediction step.
        Arguments:
            mean : ndarray, The 8 dimensional mean vector of the object state at the previous
                time step.
            covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the
                previous time step.
        Returns:
            (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
                state. Unobserved velocities are initialized to 0 mean.
        Raises:
        """
        std_pos = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-2,
            self._std_weight_position * mean[3],
        ]
        std_vel = [
            self._std_weight_velocity * mean[3],
            self._std_weight_velocity * mean[3],
            1e-5,
            self._std_weight_velocity * mean[3],
        ]
        motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

        # mean = np.dot(self._motion_mat, mean)
        mean = np.dot(mean, self._motion_mat.T)
        covariance = (
            np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T))
            + motion_cov
        )

        return mean, covariance

    def project(self, mean, covariance):
        """Project state distribution to measurement space.
        Arguments:
            mean : ndarray, The state's mean vector (8 dimensional array).
            covariance : ndarray, The state's covariance matrix (8x8 dimensional).
        Returns:
            (ndarray, ndarray): Returns the projected mean and covariance matrix of the given state
                estimate.
        Raises:
        """
        std = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-1,
            self._std_weight_position * mean[3],
        ]
        innovation_cov = np.diag(np.square(std))

        mean = np.dot(self._update_mat, mean)
        covariance = np.linalg.multi_dot(
            (self._update_mat, covariance, self._update_mat.T)
        )
        return mean, covariance + innovation_cov

    def multi_predict(self, mean, covariance):
        """Run Kalman filter prediction step (Vectorized version).
        Arguments:
            mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous
                time step.
            covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the
                previous time step.
        Returns:
            (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
                state. Unobserved velocities are initialized to 0 mean.
        Raises:
        """
        std_pos = [
            self._std_weight_position * mean[:, 3],
            self._std_weight_position * mean[:, 3],
            1e-2 * np.ones_like(mean[:, 3]),
            self._std_weight_position * mean[:, 3],
        ]
        std_vel = [
            self._std_weight_velocity * mean[:, 3],
            self._std_weight_velocity * mean[:, 3],
            1e-5 * np.ones_like(mean[:, 3]),
            self._std_weight_velocity * mean[:, 3],
        ]
        sqr = np.square(np.r_[std_pos, std_vel]).T

        motion_cov = []
        for i in range(len(mean)):
            motion_cov.append(np.diag(sqr[i]))
        motion_cov = np.asarray(motion_cov)

        mean = np.dot(mean, self._motion_mat.T)
        left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
        covariance = np.dot(left, self._motion_mat.T) + motion_cov

        return mean, covariance

    def update(self, mean, covariance, measurement):
        """Run Kalman filter correction step.
        Arguments:
            mean : ndarray, The predicted state's mean vector (8 dimensional).
            covariance : ndarray, The state's covariance matrix (8x8 dimensional).
            measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y)
                is the center position, a the aspect ratio, and h the height of the
                bounding box.
        Returns:
            (ndarray, ndarray): Returns the measurement-corrected state distribution.
        Raises:
        """
        projected_mean, projected_cov = self.project(mean, covariance)

        chol_factor, lower = scipy.linalg.cho_factor(
            projected_cov, lower=True, check_finite=False
        )
        kalman_gain = scipy.linalg.cho_solve(
            (chol_factor, lower),
            np.dot(covariance, self._update_mat.T).T,
            check_finite=False,
        ).T
        innovation = measurement - projected_mean

        new_mean = mean + np.dot(innovation, kalman_gain.T)
        new_covariance = covariance - np.linalg.multi_dot(
            (kalman_gain, projected_cov, kalman_gain.T)
        )
        return new_mean, new_covariance

    def gating_distance(
        self, mean, covariance, measurements, only_position=False, metric="maha"
    ):
        """Compute gating distance between state distribution and measurements.
        A suitable distance threshold can be obtained from `chi2inv95`. If
        `only_position` is False, the chi-square distribution has 4 degrees of
        freedom, otherwise 2.
        Arguments:
            mean : ndarray, Mean vector over the state distribution (8 dimensional).
            covariance : ndarray, Covariance of the state distribution (8x8 dimensional).
            measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in
                format (x, y, a, h) where (x, y) is the bounding box center
                position, a the aspect ratio, and h the height.
            only_position : Optional[bool], If True, distance computation is done with respect to the bounding
                box center position only.
        Returns:        
            ndarray: Returns an array of length N, where the i-th element contains the
                squared Mahalanobis distance between (mean, covariance) and
                `measurements[i]`.
        Raises:
        """
        mean, covariance = self.project(mean, covariance)
        if only_position:
            mean, covariance = mean[:2], covariance[:2, :2]
            measurements = measurements[:, :2]

        d = measurements - mean
        if metric == "gaussian":
            return np.sum(d * d, axis=1)
        elif metric == "maha":
            cholesky_factor = np.linalg.cholesky(covariance)
            z = scipy.linalg.solve_triangular(
                cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
            )
            squared_maha = np.sum(z * z, axis=0)
            return squared_maha
        else:
            raise ValueError("invalid distance metric")

Methods

def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha')

Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from chi2inv95. If only_position is False, the chi-square distribution has 4 degrees of freedom, otherwise 2.

Arguments

mean : ndarray, Mean vector over the state distribution (8 dimensional). covariance : ndarray, Covariance of the state distribution (8x8 dimensional). measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position : Optional[bool], If True, distance computation is done with respect to the bounding box center position only. Returns:
ndarray: Returns an array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and measurements[i]. Raises:

Expand source code
def gating_distance(
    self, mean, covariance, measurements, only_position=False, metric="maha"
):
    """Compute gating distance between state distribution and measurements.
    A suitable distance threshold can be obtained from `chi2inv95`. If
    `only_position` is False, the chi-square distribution has 4 degrees of
    freedom, otherwise 2.
    Arguments:
        mean : ndarray, Mean vector over the state distribution (8 dimensional).
        covariance : ndarray, Covariance of the state distribution (8x8 dimensional).
        measurements : ndarray, An Nx4 dimensional matrix of N measurements, each in
            format (x, y, a, h) where (x, y) is the bounding box center
            position, a the aspect ratio, and h the height.
        only_position : Optional[bool], If True, distance computation is done with respect to the bounding
            box center position only.
    Returns:        
        ndarray: Returns an array of length N, where the i-th element contains the
            squared Mahalanobis distance between (mean, covariance) and
            `measurements[i]`.
    Raises:
    """
    mean, covariance = self.project(mean, covariance)
    if only_position:
        mean, covariance = mean[:2], covariance[:2, :2]
        measurements = measurements[:, :2]

    d = measurements - mean
    if metric == "gaussian":
        return np.sum(d * d, axis=1)
    elif metric == "maha":
        cholesky_factor = np.linalg.cholesky(covariance)
        z = scipy.linalg.solve_triangular(
            cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True
        )
        squared_maha = np.sum(z * z, axis=0)
        return squared_maha
    else:
        raise ValueError("invalid distance metric")
def initiate(self, measurement)

Create track from unassociated measurement.

Arguments

measurement : ndarray Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h.

Returns

(ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. Raises:

Expand source code
def initiate(self, measurement):
    """Create track from unassociated measurement.
    Arguments:
        measurement : ndarray
            Bounding box coordinates (x, y, a, h) with center position (x, y),
            aspect ratio a, and height h.
    Returns:
        (ndarray, ndarray): Returns the mean vector (8 dimensional) and covariance matrix (8x8
            dimensional) of the new track. Unobserved velocities are initialized
            to 0 mean.
    Raises:
    """
    mean_pos = measurement
    mean_vel = np.zeros_like(mean_pos)
    mean = np.r_[mean_pos, mean_vel]

    std = [
        2 * self._std_weight_position * measurement[3],
        2 * self._std_weight_position * measurement[3],
        1e-2,
        2 * self._std_weight_position * measurement[3],
        10 * self._std_weight_velocity * measurement[3],
        10 * self._std_weight_velocity * measurement[3],
        1e-5,
        10 * self._std_weight_velocity * measurement[3],
    ]
    covariance = np.diag(np.square(std))
    return mean, covariance
def multi_predict(self, mean, covariance)

Run Kalman filter prediction step (Vectorized version).

Arguments

mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous time step. covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the previous time step.

Returns

(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises:

Expand source code
def multi_predict(self, mean, covariance):
    """Run Kalman filter prediction step (Vectorized version).
    Arguments:
        mean : ndarray, The Nx8 dimensional mean matrix of the object states at the previous
            time step.
        covariance : ndarray, The Nx8x8 dimensional covariance matrics of the object states at the
            previous time step.
    Returns:
        (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
            state. Unobserved velocities are initialized to 0 mean.
    Raises:
    """
    std_pos = [
        self._std_weight_position * mean[:, 3],
        self._std_weight_position * mean[:, 3],
        1e-2 * np.ones_like(mean[:, 3]),
        self._std_weight_position * mean[:, 3],
    ]
    std_vel = [
        self._std_weight_velocity * mean[:, 3],
        self._std_weight_velocity * mean[:, 3],
        1e-5 * np.ones_like(mean[:, 3]),
        self._std_weight_velocity * mean[:, 3],
    ]
    sqr = np.square(np.r_[std_pos, std_vel]).T

    motion_cov = []
    for i in range(len(mean)):
        motion_cov.append(np.diag(sqr[i]))
    motion_cov = np.asarray(motion_cov)

    mean = np.dot(mean, self._motion_mat.T)
    left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
    covariance = np.dot(left, self._motion_mat.T) + motion_cov

    return mean, covariance
def predict(self, mean, covariance)

Run Kalman filter prediction step.

Arguments

mean : ndarray, The 8 dimensional mean vector of the object state at the previous time step. covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the previous time step.

Returns

(ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. Raises:

Expand source code
def predict(self, mean, covariance):
    """Run Kalman filter prediction step.
    Arguments:
        mean : ndarray, The 8 dimensional mean vector of the object state at the previous
            time step.
        covariance : ndarray, The 8x8 dimensional covariance matrix of the object state at the
            previous time step.
    Returns:
        (ndarray, ndarray): Returns the mean vector and covariance matrix of the predicted
            state. Unobserved velocities are initialized to 0 mean.
    Raises:
    """
    std_pos = [
        self._std_weight_position * mean[3],
        self._std_weight_position * mean[3],
        1e-2,
        self._std_weight_position * mean[3],
    ]
    std_vel = [
        self._std_weight_velocity * mean[3],
        self._std_weight_velocity * mean[3],
        1e-5,
        self._std_weight_velocity * mean[3],
    ]
    motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

    # mean = np.dot(self._motion_mat, mean)
    mean = np.dot(mean, self._motion_mat.T)
    covariance = (
        np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T))
        + motion_cov
    )

    return mean, covariance
def project(self, mean, covariance)

Project state distribution to measurement space.

Arguments

mean : ndarray, The state's mean vector (8 dimensional array). covariance : ndarray, The state's covariance matrix (8x8 dimensional).

Returns

(ndarray, ndarray): Returns the projected mean and covariance matrix of the given state estimate. Raises:

Expand source code
def project(self, mean, covariance):
    """Project state distribution to measurement space.
    Arguments:
        mean : ndarray, The state's mean vector (8 dimensional array).
        covariance : ndarray, The state's covariance matrix (8x8 dimensional).
    Returns:
        (ndarray, ndarray): Returns the projected mean and covariance matrix of the given state
            estimate.
    Raises:
    """
    std = [
        self._std_weight_position * mean[3],
        self._std_weight_position * mean[3],
        1e-1,
        self._std_weight_position * mean[3],
    ]
    innovation_cov = np.diag(np.square(std))

    mean = np.dot(self._update_mat, mean)
    covariance = np.linalg.multi_dot(
        (self._update_mat, covariance, self._update_mat.T)
    )
    return mean, covariance + innovation_cov
def update(self, mean, covariance, measurement)

Run Kalman filter correction step.

Arguments

mean : ndarray, The predicted state's mean vector (8 dimensional). covariance : ndarray, The state's covariance matrix (8x8 dimensional). measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box.

Returns

(ndarray, ndarray): Returns the measurement-corrected state distribution. Raises:

Expand source code
def update(self, mean, covariance, measurement):
    """Run Kalman filter correction step.
    Arguments:
        mean : ndarray, The predicted state's mean vector (8 dimensional).
        covariance : ndarray, The state's covariance matrix (8x8 dimensional).
        measurement : ndarray, The 4 dimensional measurement vector (x, y, a, h), where (x, y)
            is the center position, a the aspect ratio, and h the height of the
            bounding box.
    Returns:
        (ndarray, ndarray): Returns the measurement-corrected state distribution.
    Raises:
    """
    projected_mean, projected_cov = self.project(mean, covariance)

    chol_factor, lower = scipy.linalg.cho_factor(
        projected_cov, lower=True, check_finite=False
    )
    kalman_gain = scipy.linalg.cho_solve(
        (chol_factor, lower),
        np.dot(covariance, self._update_mat.T).T,
        check_finite=False,
    ).T
    innovation = measurement - projected_mean

    new_mean = mean + np.dot(innovation, kalman_gain.T)
    new_covariance = covariance - np.linalg.multi_dot(
        (kalman_gain, projected_cov, kalman_gain.T)
    )
    return new_mean, new_covariance